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1 Introduction 

Low adoption of improved land management practices, including fertilizer use, is one of the main factors 

for low agricultural productivity in many developing countries. Rising agricultural productivity in many 

countries has been accompanied by greater fertilizer use. For example, sub-Saharan African countries, 

characterized by low agricultural productivity, have a very low fertilizer application rate, averaging 10 

kilograms per hectare (kg/ha) of nutrients of arable land, compared to 288 kg/ha in a high-income country 

(Hernandez and Torero, 2011). Considering the essential role that agriculture plays in the rural economy 

of many developing countries, many policies have been implemented to encourage sustainable fertilizer 

adoption. The effectiveness of different mechanisms remains though a topic of discussion. Hernandez 

and Torero (2013) and Hernandez and Torero (2018), for instance, note that fertilizer prices are generally 

higher in more concentrated markets at the global and local level. The authors argue that better 

understanding the dynamics of fertilizer prices in international markets can help in designing policies that 

promote sustainable fertilizer use in developing countries, which are increasingly dependent on imported 

fertilizer. 

Price spikes or shocks in the fertilizer market, especially excessive price shocks, can be detrimental to 

fertilizer adoption and farmer’s productivity, particularly among vulnerable smallholders in developing 

countries who lack effective risk-sharing mechanisms. Properly and timely monitoring abnormal price 

fluctuations (volatility) on fertilizer global markets is thus relevant to inform appropriate and timely 

responses and attenuate potential projected negative effects on production decisions and rural incomes. 
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On this regard, the Excessive Food Price Variability Early Warning System (hereafter Early Warning 

System), maintained by IFPRI’s Food Security Portal (https://www.foodsecurityportal.org/), identifies 

unusual periods of excessive price variability for a variety of commodities. The tool is based on 

nonparametric estimators for conditional value-at-risk (CVaR) and conditional expected short- fall (CES) 

associated with conditional distributions of the modeled price returns series, as in Martins-Filho et al. 

(2015) and Martins-Filho et al. (2018). The unusual periods of excess price variability are identified when 

the return of the underlying price series exceeds the estimated CVaR, providing an early warning system 

for farmers, traders, processors, and consumers worldwide. The agricultural products monitored include 

maize, hard and soft wheat, rice, soybeans, coffee, cocoa, sugar, and cotton. Recently, energy products 

were incorporated, including crude oil and natural gas. The price information for all these products is 

available on a daily basis, which offers a rich dataset for model estimation and hypothesis testing. 

The objective of this note is twofold. First, we aim to extend the Early Warning System to start monitoring 

fertilizers prices, particularly potash, urea, ammonia, and di-ammonium phosphate (DAP) prices from the 

US Gulf. These price series are available on the weekly basis, as opposed to the other commodities with 

daily price data. We discuss the challenges involved to incorporate these series, with a notably smaller 

sample size, and illustrate the predictive performance of estimators in terms of identifying periods of 

excessive volatility using these series. Second, drawing on the literature in extreme value theory, we 

propose alternative estimators for the CVaR, which are relatively easy to implement. 

The remainder of the note is organized as follows. In Section 2, we describe the fertilizer price series and 

returns. In Section 3, we briefly review the methodology used in the early warning system and discuss 

the adaptation needed for the fertilizer series, proposing an alternative estimation method. Section 4 

presents the predictive performance of the existing estimators used in the early warning system and 

compares it to that of the newly proposed estimator. Section 5 concludes. 

 

2 Fertilizer prices and returns 

The weekly fertilizer price data used for the analysis are spot prices obtained from Bloomberg. The 

specific price series are: Potash US Gulf NOLA (618 observations from December 17, 2012 to January 

24, 2025), Urea US Gulf NOLA (granular) (1025 observations from January 3, 2005 to January 24, 2025), 

Ammonia US Gulf NOLA (621 observations from October 29, 2012 to January 24, 2025), and DAP US 

Gulf Nola (625 observations from October 29, 2012 to January 24, 2025). 

Figure 1 plots the four weekly fertilizer prices, together with daily natural gas (Henry Hub) prices, to 

compare the dynamics of fertilizer prices relative to energy prices. The left vertical axis measures fertilizer 

prices (in US dollars per short ton, USD/ST, for potash, urea, and ammonia, and US dollars per metric 

tonne, USD/MT, for DAP) and the right vertical axis measures natural gas prices (in US dollars per Million 

British Thermal Units, USD/MMBtu). We restrict the plot to the shortest overlapping period, ensuring 

continuity across all series. We observe that all five price series exhibit a somewhat similar variation over 

time, with natural gas prices displaying slightly more frequent ups and downs (given their higher 

frequency). This analogous behavior is not surprising given that natural gas is an important input for 

several fertilizers. We also note that potash and urea prices are generally lower while ammonia prices 

tend to vary less frequently (with the series exhibiting a step function shape). Overall, this preliminary 

overview supports the application of a common modeling framework for both fertilizer and energy prices. 

 

https://www.foodsecurityportal.org/
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Figure 1: Weekly price series for potash, urea, ammonia, and DAP together with natural gas 

 

 

For the analysis below, we work with the price return, which is defined as 𝑦𝑡 = 𝑙𝑛(𝑝𝑡/𝑝𝑡−1), where 𝑝𝑡 is 

the corresponding price of potash, urea, ammonia and DAP observed at week 𝑡 . This logarithm 

transformation is generally applied in empirical finance and is a standard measure for the rate of return 

in a market, which in this case approximates the weekly percentage change in each fertilizer price. 

Figures 2-5 depict the weekly price returns (multiplied by 100) for the four fertilizers over the period 

available for each series (indicated above). We observe notably high fluctuations in price returns for urea 

during the 2007-2008 food price crisis and across all fertilizer series during the COVID-19 period. 

Table 1 provides descriptive and test statistics for the four weekly price return series. The means of all 

returns are close to zero, while ammonia exhibits the greatest variability, as indicated by its widest range 

and highest standard deviation. Most series seem to be negatively skewed (except potash) and all returns 

exhibit a leptokurtic distribution with a sample kurtosis greater than three. Based on the Jarque-Bera test 

statistics, the null hypothesis of normally distributed returns is strongly rejected in all cases. We typically 

observe statistically significant sample auto correlations (AC) at lags one and two, and large Ljung-Box 

statistics for up to 5 and 10 lags for the returns and squared returns, with the exception of ammonia for 

squared returns. These patterns support the strong dependence of returns and squared returns on lagged 

returns for most series, empirically motivating the use of an autoregressive model for fertilizer price 

returns that we discuss below. Lastly, the Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) tests generally confirm the stationarity of all return series. 
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Figure 2: Weekly price returns for potash 

 

 

Figure 3: Weekly price returns for urea 
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Figure 4: Weekly price returns for ammonia 

 

 

Figure 5: Weekly price returns for DAP 
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Table 1: Summary Statistics  

 Statistics  Fertilizer price return 

 Potash Urea Ammonia DAP 

Mean  -0.088  0.048  -0.060  0.018 

Median  0  0  0  0 

Minimum -9.403   -26.342  -39.237  -22.006 

Maximum  12.883  22.015  38.874  17.435 

Standard Deviation 1.835   4.383  6.287  2.423 

Skewness  0.959  -0.009  -0.017  -0.974 

Kurtosis  13.828  7.307  18.081  21.448 

Jarque-Bera  3108.9  791.405  5875.1  8946.9 

p-value  0.001  0.001  0.001  0.001 

Returns correlations         

AC(lag=1)  0.495*  0.373*  0.061  0.289*  

AC(lag=2)  0.362*  0.214*  0.087*  0.277* 

Ljung-Box(5)  421.399*  234.113*  20.919*  111.479* 

Ljung-Box(10)  485.847*  245.109  23.246*  117.817* 

Squared returns correlations         

AC(lag=1)  0.328*  0.327*  -0.020  0.177* 

AC(lag=2)  0.123*  0.233  0.020  0.301* 

Ljung-Box(5)  96.383*  221.531*  0.642  76.926* 

Ljung-Box(10)  98.421*  270.182*  8.383  77.364* 

Test for stationarity         

ADF(lag=5)  -6.556*  -11.131*  -8.071*  -8.562* 

KPSS (lag=5)  0.272*  0.031  0.064  0.0871 

 # Observations   618   1025  621  625 

Note: * Denotes statistical significance at 5% level.  
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3 Methodology 

Consider a fully nonparametric location-scale model defined as  

 𝑟𝑡 = 𝑚(𝑟𝑡−1) + ℎ1/2(𝑟𝑡−1)𝜖𝑡. (1) 

where 𝑟𝑡 is the price return of a given fertilizer (potash, urea, ammonia, and DAP) at week 𝑡. Based on 

the statistical features of the returns described above, we model the conditional mean 𝑚(⋅)  and 

conditional variance ℎ(⋅) of the price returns as a function of past returns (𝑟𝑡−1), and 𝜖𝑡 is an independent 

and identically distributed (IID) innovation term with a marginal distribution 𝐹𝜖(⋅), 𝐸(𝜖𝑡) = 0, and 𝑉(𝜖𝑡) =

1. 

The specification in Equation (1) can be considered as a nonparametric generalization of an 

autoregressive conditional heteroskedasticity (ARCH) model. We could incorporate more explanatory 

variables in 𝑚(⋅) and ℎ(⋅), but we refrain from doing so for two reasons. First, fertilizer price data series 

are weekly based, which results in a much smaller sample size relative to, for example, agricultural and 

energy commodity prices that are available daily. As 𝑚(⋅)  and ℎ(⋅)  are modeled as nonparametric 

functions, their estimation is subject to the “curse of dimensionality" such that univariate nonparametric 

modeling is more suitable in this situation. Second, Geng et al. (2021) include exogenous covariates 

(input, macroeconomic, and financial factors) when modeling 𝑚(⋅) and ℎ(⋅) following a similar two-step 

estimation for agricultural commodity price returns. The authors do not find clear evidence regarding the 

usefulness of including exogenous covariates, particularly for the estimation of the high order quantile, 

as we do below, for predictability purposes. We thus adopt the location-scale mode as in Equation (1). 

Define the 𝛼-order conditional value-at-risk, 𝛼-CVaR(x), as the 𝛼-quantile 𝑞𝑟𝑡|𝑟𝑡−1=𝑥(𝛼) for 𝐹𝑟𝑡|𝑟𝑡−1=𝑥, the 

conditional distribution of 𝑟𝑡 given 𝑟𝑡−1 = 𝑥. Similarly, define the 𝛼-order conditional expected shortfall, 𝛼-

CES(x), as the conditional expectation of 𝑟𝑡  given that 𝑟𝑡  exceeds 𝛼 -CVaR(x). Given the stochastic 

structure in Equation (1), with 𝑞(𝛼) denoting the 𝛼-qunatile for 𝐹𝜖(⋅), we have 

 

 𝛼 − 𝐶𝑉𝑎𝑅(𝑥) ≡ 𝑞𝑟𝑡|𝑟𝑡−1=𝑥(𝛼) = 𝑚(𝑥) + ℎ
1

2(𝑥)𝑞(𝑎), (2) 

 

 𝛼 − 𝐶𝐸𝑆(𝑥) ≡ 𝐸(𝑟𝑡|𝑟𝑡 > 𝑞𝑟𝑡|𝑟𝑡−1=𝑥(𝛼)) = 𝑚(𝑥) + ℎ
1

2(𝑥)𝐸(𝜖𝑡|𝜖𝑡 > 𝑞(𝛼)). (3) 

 

Equations (2) and (3) represent popular measures of market risk in empirical finance. Following Geng et 

al. (2021), we only consider the 𝛼-CVAR(x) measure to save space. 𝛼-CVAR(x) is a risk measure, as it 

gives the value of return 𝑟𝑡 that is exceeded with probability 1 − 𝛼, given the one period lagged return 

𝑟𝑡−1. Certainly, we could consider 𝛼-CVAR(x) with either a small 𝛼 (loss) or large 𝛼 (gain). As we are 

mainly interested on abnormally high price behaviors that can affect fertilizer access, we focus on a large 

and positive 𝛼. In this case, the threshold 𝛼-CVAR(x) is expected to be exceeded with a small probability 

1 − 𝛼. A large and positive return implies a substantial upward change in fertilizer prices from one week 

to another, which can indeed be detrimental to vulnerable farmers in developing regions. 
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3.1 Two-step approach 

A popular approach to estimate 𝛼-CVAR(x) is the two-step estimation proposed by Martins-Filho et al. 

(2018). First, the conditional mean 𝑚(⋅) and conditional variance ℎ(⋅) functions are estimated relying on 

nonparametric local linear estimation. These estimations produce a sequence of standardized residuals. 

Second, a likelihood-based procedure is applied to estimate 𝑞(𝛼). Plugging these back to Equation (2) 

produces the 𝛼-CVaR(x) estimate. We work with the 95%-CVaR(x), calculated for each week using a 

rolling window containing previous 270 weekly observations. Based on the smallest sample size in our 

working sample, we use approximately half of the observations for estimation purposes. 

To evaluate the performance of estimation in capturing 𝛼-CVAR(𝑥) for a specific return, we perform a 

backtesting during a period of 𝑚 consecutive weeks. For each of the 𝑚 weeks (with M denoting the set 

of time indices for these 𝑚 weeks), we estimate 𝛼-CVAR(𝑟𝑡−1) using the previous 270 returns, and define 

a violation occurring when 𝐼𝑡 = 𝐼(𝑟𝑡 > 𝛼 − 𝐶𝑉𝐴𝑅(𝑟𝑡−1)) = 1, where 𝐼(⋅) is an indicator function. Under the 

null hypothesis that return dynamics on 𝑟𝑡 are correctly specified, 𝐼𝑡 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝛼). Consequently, 

𝐷 = ∑𝑡∈𝑀 𝐼𝑡  will follow a Binomial (𝑚, 1 − 𝛼)  distribution. We perform an one-sided test with the 

alternative hypothesis that 𝛼-CVAR(𝑥) is not correctly specified with too many violations. Naturally, a two-

sided test, with the alternative hypothesis being 𝛼-CVAR(𝑥) is not correctly specified with too many or 

too few violations, can also be used. However, we are interested in identifying periods with excessive 

price hikes, thus, rejection with the one-sided test can be more informative. 

With 𝛼 = 0.95, we report the number of violation weeks (𝑘), the percentage of violations in 𝑚 weeks 

(𝑘/𝑚), together with the p-value that 𝑃(𝐷 > 𝑘). If the p-value is greater than 5%, we fail to reject the null 

hypothesis that the number of violations is consistent with the expectation from the model (i.e., the 

dynamics is correctly captured), and we characterize this week as belonging to a period of low volatility; 

if the p-value is between 2.5% and 5%, we mark it as a period of moderate volatility; and if the p-value is 

below 2.5%, we consider it a period of high or excessive volatility. When comparing the relative predictive 

performance of different estimators during backtesting, the interest is in identifying weeks that effectively 

exhibit unusual volatility and use p-values. Alternatively, we can simply assess the proportion of days 

when the fertilizer price returns exceed the estimated 95%-CVaR from different estimators, and check 

which estimator leads to a proportion of 𝑘/𝑚 closer to 5%. 

 

3.2 An alternative approach 

In this section, we propose an alternative approach to estimate the high order 𝛼 quantile 𝑞(𝛼) for 𝜖. If the 

distribution of 𝜖 is assumed to have Pareto right tail, for 𝑥 > 0, 

 

 𝑃(𝜖 ≥ 𝑥) = 𝐿(𝑥)𝑥−𝑎, 

 where 𝐿(𝑥) is slowly varying at infinity and 𝑎 is the tail index. If 𝑥 > 0 and 𝑥0 > 0, then 

 

 
𝑃(𝜖≥𝑥)

𝑃(𝜖≥𝑥0)
=

𝐿(𝑥)

𝐿(𝑥0)
(
𝑥

𝑥0
)−𝑎. 
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Now suppose that 𝑥 = 𝑞(𝛼) and 𝑥0 = 𝑞(𝛼0) for 1 > 𝛼 > 𝛼0 > 0 and 𝛼0 close to 1 (to estimate the high-

order 𝛼 quantile). Then, there is 

 

 
1−𝛼

1−𝛼0
=

𝑃(𝜖≥𝑞(𝛼))

𝑃(𝜖≥𝑞(𝛼0))
=

𝐿(𝑞(𝛼))

𝐿(𝑞(𝛼0))
(
𝑞(𝛼)

𝑞(𝛼0)
)−𝑎. 

 

Since 𝐿(⋅) is slowly varying at infinity, 𝑞(𝛼) and 𝑞(𝛼0) are assumed to be reasonably large, and we have 

 

 
𝐿(𝑞(𝛼))

𝐿(𝑞(𝛼0))
≈ 1. 

From the above 

 

 
𝑞(𝛼)

𝑞(𝛼0)
= (

1−𝛼0

1−𝛼
)1/𝑎. 

So we can estimate 

 

 𝑞(𝛼) = 𝑞(𝛼0)(
1−𝛼0

1−𝛼
)1/𝑎. 

 

We use the Hill estimator (Hill (1975)) for 𝑎 defined as 

 

 �̂�(𝑐) =
𝑛(𝑐)

∑𝜖𝑖≥𝑐 𝑙𝑛(𝜖𝑖/𝑐)
, 

 

where 𝑛(𝑐) is the number of 𝜖𝑖  greater than 𝑐 . The challenge lies in choosing 𝑐  or 𝑛(𝑐). A common 

procedure is to use the Hill plot of �̂�(𝑐) against 𝑛(𝑐), expecting that the Hill plot will exhibit certain stability 

for 𝑛(𝑐) not too small (small sample size, variability could be large) or not too large (using most data, 

could suffer from bias). We can then use a value of 𝑛(𝑐) in the stability region. However, this approach 

is not always helpful because the stability region may not reveal itself in the plot, i.e., a Pareto tail does 

not imply that the tail is exactly like that of a Pareto (Danielsson and De Vries, 1997). 

The advantage of a carefully chosen 𝑐 along the suggestion of Danielsson and De Vries (1997) could 

also be explored. In this case, we simply use �̂�𝑎0 for a simple comparison with the two-step approach, 

where �̂�𝑎0 refers to the threshold to determine exceedance in the two-step approach, and we use it to 

determine 𝑐 and the associated 𝑛(𝑐). Relying on the local linear estimation of 𝑚(⋅) and ℎ(⋅), together with 

�̂�(𝛼) based on the Hill estimator, we use Equation (2) to produce an alternative estimator for 𝛼-CVaR(x), 

which we denote below as the Hill-based 𝛼-CVaR(x) estimator. 
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4 Predictive performance and comparison across methods 

We now turn to our estimation results. We first present the realized returns and estimated 95%− 𝐶𝑉𝑎𝑅(𝑥) 

based on the two methods described above, the two-step 𝛼 -CVaR(x) and Hill-based 𝛼 -CVaR(x) 

estimator; for completeness, we also report the two-step 95%-CES(x). We drop ammonia from the 

analysis, as the price for this fertilizer commodity does not exhibit much variation, leading to too many 

zeros in their modeled returns as shown in Figure 4. We consider a rolling window of 270 observations 

to perform the estimation of 95%− 𝐶𝑉𝑎𝑅(𝑥), such that the time periods shown focus on more recent 

periods and are shorter than what is presented in Figures 2, 3, and 5. We additionally plot the estimates 

for the conditional mean (𝑚) and variance (ℎ) of the price returns, as we learn from Table 1 that both 

depend on the past return. Figures 6-8 correspond to potash, Figures 9-11 to urea, and Figures 12-14 to 

DAP. 

We observe several interesting patterns. First, across the three fertilizer returns, there is a significant 

degree of nonlinearity in the estimates of the conditional mean (𝑚 ) and variance (ℎ ). While 𝑚  is 

increasing in 𝑟𝑡 for potash and urea, the effect of 𝑟 on 𝑚 is 𝑈-shaped in the case of DAP. Second, we 

find both ups and downs in ℎ estimates, with the effect of 𝑟 on ℎ resembling an inverted 𝑈-shape. This 

illustrates the importance of allowing a nonparametric specification for both 𝑚(⋅) and ℎ(⋅) in Equation (1). 

Third, as expected, the 95%-CVaR(x) estimates sit mostly above the returns, with the 95%-CES(x) 

estimate being even larger. Yet, when comparing the two-step versus the Hill measure, the two-step 

95%-CVaR(x) tends to be smaller than the Hill-based 95%-CVaR(x). This difference is more evident for 

urea that has a larger sample for comparison than potash and DAP. 

We are also interested in assessing which estimation method offers a better predictive performance in 

terms of identifying periods of abnormal price fluctuations. We accordingly compare the proportion of 

weeks where price returns effectively exceed the estimated 95%-CVaR(x) following the two-step and Hill-

based estimators. The preferred model is the one in which the proportion of such weeks is closer to the 

5% target, which is the pre-determined expected percentage of exceedance. Specifically, for 𝑚 weeks 

with an estimated 95% -CVaR(x) (using a rolling window containing the preceding 270 weekly 

observations to estimate the threshold value), we identify the number of weeks 𝑘𝑖  where the return 

exceeds the estimated threshold value based on the 𝑖-𝑡ℎ method, 𝑖 = 1 for the two-step method and 𝑖 =

2 for the Hill-based method. If 𝑘1/𝑚 is closer to 5%, then method 1 performs better, and the opposite 

otherwise.4 We adopt the bias-corrected two-step method in Martins-Filho et al. (2018), which correctly 

centers the asymptotic distribution to account for the bias present in the estimator based on Extreme 

Value Theory. This method generally yields more reliable statistical inference than the bias-uncorrected 

procedure. 

 

  

 
4 As discussed before, we additionally report the one-sided p-value of Binomially distributed 𝐷 with mean 𝑚 ∗ 5% 

and variance of 𝑚 ∗ 5% ∗ 95%. Following this criterion, the preferred method is the one with a larger p-value, which 

is indicative that the method better captures the return dynamics. 
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Figure 6: Potash returns, 𝟗𝟓%− 𝑪𝑽𝒂𝑹(𝒙) estimates 

 

Figure 7: Conditional mean estimates for potash returns 

 

Figure 8: Conditional variance estimates for potash returns 

 



12 

Figure 9: Urea returns, 𝟗𝟓%− 𝑪𝑽𝒂𝑹(𝒙) estimates 

 

Figure 10: Conditional mean estimates for urea returns 

 

 

Figure 11: Conditional variance estimates for urea returns 
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Figure 12: DAP returns, 𝟗𝟓%− 𝑪𝑽𝒂𝑹(𝒙) estimates 

 

Figure 13: Conditional mean estimates for DAP returns 

 

Figure 14: Conditional variance estimates for DAP returns 
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Table 2 presents the out-of-sample performance for the two estimators of 95%-CVaR(x) for the three 

fertilizer series. In line with the graphical analysis, the two-step method presents a 95%-CVaR(x) that is 

smaller than the Hill-based method. The former method leads to a larger number of weeks in which the 

return exceeds the 95%-CVaR(x) compared to the Hill-based method. Furthermore, using 5% as the 

expected percentage of weeks in which the return should exceed the 95%-CVaR(x), we observe that the 

Hill-based method exhibits a percentage that is substantially closer to the target of 5%, thus, being the 

preferred method across all three fertilizer series considered.5 

 

Table 2: Out-of-sample performance of the two methods 

 Commodity Two-step method Hill-based method Preferred method 

  𝒌 𝒌/𝒎 p-value 𝒌 𝒌/𝒎 p-value  

 Potash (𝑚 = 346) 79 0.228 0.000 23 0.066 0.080 Hill-based 

Urea (𝑚 = 753) 228 0.303 0.000 33 0.044 0.782 Hill-based 

DAP (𝑚 = 353) 98 0.278 0.000 28 0.079 0.006 Hill-based 

Note: 𝑚: total # of weeks; 𝑘: # of weeks return > 95%-CVaR(x); 𝑘/𝑚: % of weeks return > 95%-CVaR(x); p-value 

for the null hypothesis that the number of violations is consistent with the expectation of the model. 

 

5 Conclusion 

This note formally models the behavior of fertilizer prices to identify periods of abnormal price fluctuations 

that can be detrimental for vulnerable smallholders global wide. The ultimate goal is to incorporate these 

fertilizer series into the Early Warning System, maintained by IFPRI’s Food Security Portal, to facilitate 

effective and timely responses on input and agricultural markets. 

We work with weekly fertilizer price data, resulting in significantly smaller sample sizes compared to those 

for agricultural and energy prices already monitored in the Early Warning System on a daily basis. We 

continue to model the price return series following a conditional location-scale approach, but restrict the 

conditional mean and variance to depend solely on the one-period lag of the return. We similarly 

implement the bias-corrected two-step estimator, proposed by Martins-Filho et al. (2018), to model the 

95%-level conditional Value-at-risk for fertilizer price returns (two-step 95%-CVaR(x)), as in the case of 

agricultural and energy commodity prices monitored in the Early Warning System, and further propose 

the Hill-based 95%-CVaR(x) estimator as an alternative approach. 

 
5 Although not reported, we additionally examined the performance of the bias-uncorrected two-step 95%-CVaR(x) 

estimate. We observe that the out-of-sample performance of this estimator is not as good as the Hill estimate, but 

better than the bias-corrected two-step 95%-CVaR(x) estimate for the three fertilizer price returns, which we believe 

may stem from the reduced sample size of these series. 
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The estimation results are encouraging regarding the out-of-sample performance for the Hill-based 

estimator for all three fertilizer price returns analyzed, including potash, urea, and DAP. We conjecture 

that the much smaller sample size for fertilizer prices (relative to agricultural and energy prices) might be 

an important factor explaining the results obtained, as the bias-corrected two-step estimator requires 

estimating second order parameters, which is more appropriate for relatively larger sample sizes. Overall, 

the Hill-based estimator, being simple to construct and exhibiting a more robust out-of-sample 

performance, can serve as a promising tool for expanding the Early Warning System to monitor fertilizer 

price returns, at least for the three series modeled. 
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