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1 Introduction

Let Pt denote the price of an asset (commodity) of interest in time period t where t ∈ T = {0,±1,±2, · · · }

We denote the net returns over the most recent period by Rt = Pt−Pt−1
Pt−1

and the log-returns by rt =

log(1 +Rt) = logPt − logPt−1. We assume that

rt = m(rt−1, rt−2, · · · , rt−H , wt.) + h1/2(rt−1, rt−2, · · · , rt−H , wt.)εt (1)

whereH is a finite number in {0, 1, 2, · · · }, wt. is a 1×K dimensional vector of random variables which may

include lagged variables of its components. The functions m(·) : <d → < and h(·) : <d → (0,∞) belong

to a to a suitably restricted class to be defined below but we specifically avoid the assumption that these

functions can be parametrically indexed. εt are components of an independent and identically distributed

process with marginal distribution given by Fε which does not depend on (rt−1, rt−2, · · · , rt−H , wt.),

E(εt) = 0 and V (εt) = 1. For simplicity, we put X ′t. = (rt−1, rt−2, · · · , rt−H , wt.)′ a d = H + K-

dimensional vector and assume that

m(Xt.) = m0 +
d∑
a=1

ma(Xta), and h(Xt.) = h0 +
d∑
a=1

ha(Xta). (2)

Hence we write,1

rt = m0 +
d∑
a=1

ma(Xta) +

(
h0 +

d∑
a=1

ha(Xta)

)1/2

εt. (3)

There exists a sample of size n denoted by {(rt, Xt1, · · · , Xtd)}nt=1 which are taken to be realizations

from an α-mixing process following (3) and for identification purposes we assume that E(ma(Xta)) =

E(ha(Xta)) = 0 for all a.

Under the assumption that Fε is strictly increasing in its domain we define for α ∈ (0, 1) the α-quantile

q(α) = F−1
ε (α). Then, the α-quantile for the conditional distribution of rt given Xt., denoted by q(α|Xt.)

is given by

q(α|Xt.) ≡ F−1(α|Xt.) = m(Xt.) + (h(Xt.))1/2q(α). (4)

This conditional quantile is the value for returns that is exceeded with probability 1−α given past returns

(down to period t−H) and other economic or market variables (wt.). Clearly, large (positive) log-returns

indicate large changes in prices from periods t − 1 to t and by considering α to be sufficiently large we
1We note that the set of random variables appearing as arguments in m and h need not coincide. We keep them the

same to facilitate notation and accommodate the most general setting.
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can identify a threshold q(α|Xt.) that is exceeded only with a small probability α. Realizations of rt that

are greater than q(α|Xt.) are indicative of unusual price variations given the conditioning variables.2 In

the next section we outline an estimation strategy for q(α|Xt.).

2 Estimation

Estimation of q(α|Xt.) will be conducted in two stages. First, m and h are estimated by m̂(Xt.) and

ĥ(Xt.) given the sample {(rt, Xt1, · · · , Xtd)}nt=1. Second, standardized residuals ε̂t = rt−m̂(Xt.)

ĥ(Xt.)1/2 are used

in conjunction with extreme value theory to estimate q(α). Conceptually, the estimation strategy follows

Martins-Filho and Yao (2006) but the the set of allowable conditioning variables (Xt.) here is much richer

than the set they considered. This added generality requires more involved steps in the estimation of m

and h and motivated the additive structure described in (2).

2.1 Estimation of m and h

We estimate m by the spline backfitted kernel (SBK) proposed by Wang and Yang (2007). We assume

that every component of Xt. takes values in a compact interval [la, ua] ⊂ < for a = 1, · · · , d. For each

interval we select a collection of equally spaced knots la = k0 < k1 < k2 < · · · < kNn
< ua = kNn+1.

{ki}Nn
i= is the collection of interior knots and Nn, the number of interior knots, is proportional to n,

specifically Nn ∝ n2/5log n but does not dependent on a. The interior knots divide the interval [la, ua]

in Nn + 1 subintervals [kj , kj+1) for j = 0, 1, · · · , Nn each of length gn = (ua − la)/(Nn + 1). Let

Ij,a(xa) =
{

1 if xa ∈ [kj , kj+1)
0 otherwise for j = 0, 1, · · · , Nn and for all a. We define the B-spline estimator

for m evaluated at x = (x1, · · · , xd) as

m̂(x) = λ̂0 +
d∑
a=1

Nn∑
j=1

λj , aIj,a(xa) (5)

where

(λ̂0, λ̂11, · · · , λ̂Nnd) = argmin
<dNn+1

n∑
t=1

rt − λ0 −
d∑
a=1

Nn∑
j=1

λj,aIj,a(Xta)

2

. (6)

The λ̂ja are used to construct pilot estimators for each component ma(xa) in equation (3), which are

defined as

m̂a(xa) =
Nn∑
j=1

λ̂j,aIj,a(xa)− 1
n

n∑
t=1

Nn∑
j=1

λ̂j,aIj,a(Xta) and m̂0 = λ̂0 +
1
n

d∑
a=1

n∑
t=1

Nn∑
j=1

λ̂j,aIj,a(Xta). (7)

2Unusual price changes may be indicative of speculative behavior on the market of market agents.
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These pilot estimators, together with ĉ = 1
n

∑n
t=1 rt are used to construct pseudo-responses

r̂ta = rt − ĉ−
d∑

α=1,α6=a

m̂α(Xtα). (8)

We then form d sequences {(r̂ta, Xta)}nt=1 which are used to estimate ma via an univariate nonparametric

regression smoother. There are various convenient kernel based choices. The simplest is a Nadaraya-

Watson kernel estimator, i.e.,

m̂∗a(xa) =

∑n
t=1K

(
Xta−xa

hn

)
r̂ta∑n

t=1K
(
Xta−xa

hn

) (9)

where K(·) is a kernel function and hn is a bandwidth such that hn ∝ n−1/5. Wang and Yang (2007)

prove that for any xa ∈ [la + hn, ua − hn]

√
nhn(m̂∗a(xa)−ma(xa)−h2

nba(xa)) d→ N(0, v2
a(xa) = E(h(X1, · · · , Xd)|Xa = xa)(fa(xa))−1

∫
K2(u)du)

where ba(xa) =
(

(1/2)m(2)
a (xa)fa(xa) +m

(1)
a (xa)f (1)

a (xa)
)

(fa(xa))−1
∫
u2K(u)du, fa(xa) is the marginal

density of the random variable Xa, and for an arbitrary function g, g(δ) indicates the δ-th derivative.

The estimator for m(x1, · · · , xd) is naturally given by m̂∗(x1, · · · , xd) = ĉ+
∑d
a=1 m̂

∗
a(xa).

To estimate h we follow the same procedure outlined in the estimation of m with rt substituted with

the squared residulas û2
t = (rt−m̂∗(Xt1, · · · , Xtd))2. The resulting estimator for h(x1, · · · , xd) is denoted

by ĥ∗(x1, · · · , xd). The estimators m̂∗ and ĥ∗ are used to construct a sequence of estimated standardized

residuals ε̂t = rt−m̂∗(Xt.)

(ĥ∗(Xt.))1/2 which will be used in the estimation of q(α).

2.2 Estimation of qα

The estimation of qα follows Martins-Filho and Yao (2006). The estimation is based on a fundamental

result from extreme value theory, which states that the distribution of the exceedances of any random

variable (ε) over a specified nonstochastic threshhold u, i.e, Z = ε− u can be suitably approximated by

a generalized pareto distribution - GPD (with location parameter equal to zero) given by,

G(x;β, ψ) = 1−
(

1 + ψ
x

β

)−1/ψ

, x ∈ D (10)

where D = [0,∞) if ψ ≥ 0 and D = [0,−β/ψ] if ψ < 0. Estimated standardized residuals ε̂t will be

used to estimate the tails of the density fε. For this purpose we order the residuals such that ε̂j:n is

the jth largest residual, i.e., ε̂1:n ≥ ε̂2:n ≥ ... ≥ ε̂n:n and obtain k < n excesses over ε̂k+1:n given by
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{ε̂j:n − ε̂k+1:n}kj=1, which will be used for estimation of a GPD. By fixing k we in effect determine the

residuals that are used for tail estimation and randomly select the threshold. It is easy to show that for

α > 1− k/n and estimates β̂ and ψ̂, q(α) can be estimated by,

q̂(α) = ε̂k+1:n +
β̂

ψ̂

((
1− α
k/n

)−ψ̂
− 1

)
. (11)

Combining the estimator in (11) with first stage estimators, and using (4) gives estimators for q(α|Xt.).

We now discuss how we proceed with the estimation of β and ψ.

2.3 L-Moment Estimation of β and ψ

Given the results in Smith (1984, 1987), estimation of the GPD parameters has normally been conducted

by constrained maximum likelihood (ML). Here we propose an alternative estimator based on L-Moment

Theory (Hosking (1990); Hosking and Wallis (1997)). Traditionally, raw moments have been used to

describe the location, scale, and shape of distribution functions. L-Moment Theory provides an alternative

approach that exhibits a number of desirable properties.

Let Fε be a distribution function associated with a random variable ε and q(u) : (0, 1)→ < its quantile.

The rth L-moment of ε is defined as,

λr =
∫ 1

0

q(u)Pr−1(u)du for r = 1, 2, ... (12)

where Pr(u) =
∑r
k=0 pr,ku

k and pr,k = (−1)r−k(r+k)!
(k!)2(r−k)! , which contrasts with the traditional raw moments

µr =
∫ 1

0
q(u)rdu. Theorem 1 in Hosking (1990) gives the following justification for using L-moments to

describe distributions: a) µ1 is finite if and only if λr exist for all r; b) a distribution Fε with finite µ1 is

uniquely characterized by λr for all r. Thus, a distribution can be characterized by its L-moments even if

raw moments of order greater than 1 do not exist, and most importantly, this characterization is unique,

which is not true for raw moments.

It is easily verified that λ1 = µ1, therefore the first L-moment when it exists provides the traditionally

used measure of location for a distribution. As pointed out by Hosking (1990); Hosking and Wallis (1997),

λ2 is up to a scalar the expectation of Gini’s mean difference statistic, therefore providing a measure of

scale that differs from the traditional variance - µ2−µ2
1 by placing smaller weights on differences between

realizations of the random variable. Hosking (1989) shows that if µ1 exists −1 < τ3 ≡ λ3
λ2

< 1 with
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τ3 = 0 for symmetric distributions, providing a bounded measure of skewness that is less sensitive to

the extreme tails of the distribution than the traditional (unbounded) measure of skewness given by

µ3−3µ2µ1+2µ3
1

(µ2−µ2
1)

3/2 . Similarly, −1 < τ4 ≡ λ4
λ2

< 1 can be interpreted as a bounded measure of kurtosis (Oja

(1981)) that is less sensitive to the extreme tails of the distribution than the traditional (unbounded)

measure given by µ4−4µ3µ1+6µ2µ
2
1−3µ4

1
(µ2−µ2

1)
2 . Hence, contrary to traditional measures of location and shape,

L-moment based measures of scale, skewness and kurtosis do not require the existence of higher order

raw moments, allowing for synthetic measures of distribution shape even when higher order raw moments

do not exist.

In addition, L-moments can be used to estimate a finite number of parameters θ ∈ Θ that identify

a member of a family of distributions. Suppose {Fε(θ) : θ ∈ Θ ⊂ <p}, p a natural number, is a family

of distributions which is known up to θ. A sample {εt}nt=1 is available and the objective is to estimate

θ. Since, λr, r = 1, 2, 3... uniquely characterizes Fε, θ may be expressed as a function of λr. Hence, if

estimators λ̂r are available, we may obtain θ̂(λ̂1, λ̂2, ...). From equation (12), λr+1 =
∑r
k=0 pr,kβk where

βk =
∫ 1

0
q(u)ukdu for r = 0, 1, 2, · · · . Given the sample, we define εk,n to be the kth smallest element of

the sample, such that ε1,n ≤ ε2,n ≤ ... ≤ εn,n. An unbiased estimator of βk is

β̂k = n−1
n∑

j=k+1

(j − 1)(j − 2)...(j − k)
(n− 1)(n− 2)...(n− k)

εj,n

and we define λ̂r+1 =
∑r
k=0 pr,kβ̂k for r = 0, 1, · · · , n− 1.

In particular, if Fε is a generalized pareto distribution with θ = (µ, β, ψ), it can be shown that

µ = λ1 − (2 − ψ)λ2, β = (1 − ψ)(2 − ψ)λ2, ψ = − 1−3(λ3/λ2)
1+(λ3/λ2)

. In our case, where µ = 0, β = (1 − ψ)λ1,

ψ = 2− λ1/λ2 we define the following L-moment estimators for ψ and β,

ψ̂ = 2− λ̂1

λ̂2

and β̂ = (1− ψ̂)λ̂1.

Similar to ML estimators, these L-moment parameter estimators are
√
n-asymptotically normal for ψ <

0.5. However, they are much easier to compute than ML estimators as no numerical optimization or

iterative procedure is necessary. Although asymptotically inefficient relative to ML estimators, L-moment

based parameter estimators have reasonably high asymptotic efficiency (Hosking (1990)). For the GPD

considered here, asymptoic efficiency is always higher than 70 percent when 0 < ψ < 0.3.

More important, from a practical perspective, is that L-Moment based parameter estimators can
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outperform ML (based on mean squared error) in finite samples as indicated by Hosking et al. (1985);

Hosking (1987). The results are not entirely surprising as the efficiency of ML estimators is attained only

asymptotically. In fact, as observed by Hosking and Wallis (1997), it may be necessary to deal very large

samples before asymptotic distributions provide useful approximations to their finite sample equivalents.

This seems to be especially true for GPD estimation, but it can also be verified in other more general

contexts.

3 Empirical exercise

We have used the estimator described in the previous sections to estimate conditional quantiles for log

returns of future prices (contracts expiring between one and three months) of hard wheat, soft wheat,

corn and soybeans. For these empirical exercises we use the following model

rt = m0 +m1(rt−1) +m2(rt−2) + (h0 + h1(rt−1) + h2(rt−2))1/2 εt. (13)

For each of the series of log returns we select the first n = 1000 realizations (starting January 3, 1994) and

forecast the 95% conditional quantile for the log return on the following day. This value is then compared

to realized log return. This is repeated for the next 500 days with forecasts always based on the previous

1000 daily log returns. We expect to observe 25 returns that exceed the 95% estimated quantile. Based

on an asymptotic approximation of the binomial distribution by a Gaussian distribution, we calculate

p-values to test the adequacy of our model in forecasting the conditional quantiles. The results for each

price series are given below together with figures 1-4 that provide quantile forecasted values (blue line)

and realized log returns (green line).
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Soybeans: We expect 25 violations, i.e., values of the returns that exceed the estimated quantiles. The

actual number of forecasted violations is 21 and the the p-value is 0.41, significantly larger than 5 percent,

therefore providing evidence of the adequacy of the model.

Figure 1: Estimated 95 % conditional quantile and realized log returns for soybeans
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Hard wheat: We expect 25 violations, i.e., values of the returns that exceed the estimated quantiles.

The actual number of forecasted violations is 21 and the the p-value is 0.41, significantly larger than 5

percent, therefore providing evidence of the adequacy of the model.

Figure 2: Estimated 95 % conditional quantile and realized log returns for hardwheat
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Soft wheat: We expect 25 violations, i.e., values of the returns that exceed the estimated quantiles. The

actual number of forecasted violations is 25 and the the p-value is 1, significantly larger than 5 percent,

therefore providing evidence of the adequacy of the model.

Figure 3: Estimated 95 % conditional quantile and realized log returns for softwheat
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Corn: We expect 25 violations, i.e., values of the returns that exceed the estimated quantiles. The

actual number of forecasted violations is 34 and the the p-value is 0.06, larger than 5 percent, therefore

providing evidence of the adequacy of the model. However, in this case evidence is not as strong as in

the case for soybeans, hard wheat or soft wheat.

Figure 4: Estimated 95 % conditional quantile and realized log returns for corn
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